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Abstract

In this paper we construct numerical schemes of high order of accuracy for hyperbolic balance law systems with

spatially variable flux function and a source term of the geometrical type. We start with the original finite difference

characteristicwise weighted essentially nonoscillatory (WENO) schemes and then we create new schemes by modifying

the flux formulations (locally Lax-Friedrichs and Roe with entropy fix) in order to account for the spatially variable

flux, and by decomposing the source term in order to obtain balance between numerical approximations of the flux

gradient and of the source term. We apply so extended WENO schemes to the one-dimensional open channel flow

equations and to the one-dimensional elastic wave equations. In particular, we prove that in these applications the new

schemes are exactly consistent with steady-state solutions from an appropriately chosen subset. Experimentally ob-

tained orders of accuracy of the extended and original WENO schemes are almost identical on a convergence test.

Other presented test problems illustrate the improvement of the proposed schemes relative to the original WENO

schemes combined with the pointwise source term evaluation. As expected, the increase in the formal order of accuracy

of applied WENO reconstructions in all the tests causes visible increase in the high resolution properties of the

schemes.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we propose numerical schemes of high order of accuracy particularly designed for balance

law systems with spatially varying flux and geometrical source term. Two such balance law systems of

particular interest in applications are open channel flow equations and elastic wave equations.
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The way how to treat difficulties that arise from geometrical source terms is by now well known and

consist in creating a well-balanced scheme [12,13], possibly with exact conservation property [3,4]. There are

numerous results in this area that begin with the work of Berm�udez and V�azquez [4], and then papers of
Greenberg and LeRoux [11], Berm�udez et al. [3], LeVeque [21], Jenny and M€uller [18], Bristeau and

Perthame [5], Chinnaya and LeRoux [7], Gosse [12,13], Hubbard and Garc�ıa–Navarro [17], Jin [20],

Perthame and Simeoni [23], Zhou et al. [31], etc. follow. Most of these results are concerned with shallow

water equations, and some with transport of a pollutant or temperature in shallow waters, or with chemical

Euler equations.

On the other hand, when we add a spatially variable flux, there are fewer known results. In particular,

V�azquez [28], Hubbard and Garc�ıa-Navarro [17], Garc�ıa-Navarro and V�azquez-Cend�on [10], and Burguete

and Garc�ıa-Navarro [6] treat this problem for the case of open channel flow equations. However, typically
the case of rectangular cross-section channel geometry is discussed, and much more rarely the general case

of completely irregular channel geometry is taken into consideration. In particular, in [30] we solved this

general case with appropriately modified upwind schemes – Q-scheme and flux limited scheme. Further-

more, Bale et al. [1] deal with the balance laws with spatially variable flux functions, give a new version of

the wave propagation method and apply it to elastic wave equations.

We must emphasize that in all the known results proposed schemes for balance laws of the discussed type

are at most of the second order of accuracy. Therefore, there is a need for well-balanced schemes with

higher orders of accuracy. A very well-known set of high order and shock capturing schemes are the es-
sentially nonoscillatory (ENO) and the weighted essentially nonoscillatory (WENO) schemes. ENO

schemes were developed by Harten and Osher [15,16], and WENO were first proposed by Liu et al. [22].

These schemes were originally designed for hyperbolic conservation laws with autonomous, i.e., not spa-

tially variable, flux functions. In [29] we extended the finite difference version of these schemes to new

schemes for hyperbolic balance laws with geometrical source term and applied them successfully to shallow

water equations, i.e., we obtained schemes that are well balanced, and even more exactly consistent with

quiescent flow. We proposed a similar WENO extension for the sediment transport equations in [8]. The

work we present now is a direct continuation of these papers.
In fact, here, we create a new algorithm, which is a natural extension of the original schemes as well as

the ones we presented before. In particular, we present extensions for finite difference versions of locally

Lax-Friedrichs and Roe with entropy fix formulations. In Sections 2 and 3 we extend the original schemes

to one-dimensional open channel flow equations and to one-dimensional elastic wave equations, respec-

tively. Section 4 contains the generalization of the new algorithms, as well the conditions on the terms in the

general algorithm that guarantee the schemes are consistent with any chosen subset of steady-state solu-

tions. Finally, in Section 5 we present a convergence test and several test problems aimed on testing the

improvement of the schemes when compared with the original WENO schemes combined with pointwise
source term evaluation, and also aimed on testing high resolution properties of the schemes.
2. Extension of WENO schemes to one-dimensional open channel flow equations

The one-dimensional open channel flow equations [9] consist of the mass conservation law and the

momentum balance law

oA
ot

þ oQ
ox

¼ 0;

oQ
ot

þ o

ox
Q2

A

�
þ gI1

�
¼ g I2

�
� A

dz
dx

�
:

ð1Þ
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Here, t is the time, x is the space coordinate, A ¼ Aðx; tÞ is the wetted cross-section area, Q ¼ Qðx; tÞ is the
discharge, g is the acceleration due to gravity, and z ¼ zðxÞ is the bed level. In particular, discharge and

water velocity v ¼ vðx; tÞ are related as Q ¼ A � v. Furthermore, I1 ¼ I1ðx; hÞ ¼
R h
0
ðh� fÞBðx; fÞdf is the

hydrostatic pressure force term. Here, h ¼ hðx;AÞ is the water depth and B ¼ Bðx; fÞ is the channel width.

Obviously they are connected through relation A ¼
R h
0
Bðx; fÞdf. Finally, I2 ¼ I2ðx; hÞ ¼

R h
0
ðh� fÞ oB

ox ðx; fÞdf
is the term that accounts for the forces exerted by the channel walls at contractions and expansions. Open

channel flow equations also have an additional source term that models friction forces. It is the term

�gAðM2QjQj=A2=3P 4=3Þ that must be added to the right-hand side of the second equation in (1). In that

friction term, M ¼ MðxÞ is the Manning friction factor and P ¼ P ðx;AÞ is the wetted area perimeter.

In fact, system of balance laws (1) is of type

otuþ oxfðu; xÞ ¼ gðu; xÞ ð2Þ

with

u ¼ A
Q

� �
; f ¼ Q

Q2

A þ gI1

� �
; g ¼ 0

gI2 � gA dz
dx

� �
: ð3Þ

Here, u is the vector of conserved variables, f is the flux, and g is the source term.

Our goal is to numerically solve (1) by application of finite difference WENO schemes. We immediately

see that we must face two difficulties that are not covered with the original WENO algorithms: the flux is

spatially variable and the source term is of the geometrical type. Therefore, we need to extend the original
WENO schemes, and we proceed as follows.

Typically in finite difference WENO schemes numerical computations are divided in two separate tasks.

The first task is the integration in time for the system in consideration. For that purpose the system is

rewritten in the form otu ¼ L with L ¼ �oxf þ g, and this task is solved by a Runge–Kutta type method

[27]. Since the difficulties that arise in the case (2) are related to the space coordinate, it is clear that there is

no need for our intervention in this part of the algorithm.

The second task is the numerical approximation of L. More precisely, if a space discretization with cells

½xi�1=2; xiþ1=2� of uniform width Dx is assumed and if a numerical approximation ui, i ¼ 1; . . . ;N to the
solution u in the ith cell center at any time t is known, an algorithm for the evaluation of Li, i ¼ 1; . . . ;N in

the form

Li ¼
�1

Dx
ðf iþ1=2 � f i�1=2Þ þ gi ð4Þ

must be proposed. Here f iþ1=2, i ¼ 0; . . . ;N is the numerical flux at the ðiþ 1=2Þth cell boundary and gi,

i ¼ 1; . . . ;N is the numerical source term in the ith cell.

In many cases when the source term is present a simple pointwise evaluation, i.e., gi ¼ gðui; xiÞ works
well. In particular, this approach is good enough for the friction term as we discussed in [29,30]. However,

this approach gives very poor results if the source term is of the geometrical type. In fact, as it is proposed in

[4] a decomposition of the geometrical source term of the form

gi ¼ gi�1=2;R þ giþ1=2;L ð5Þ

is necessary. This decomposition of the source term takes into account the need to include upwinding in the

source term approximations, which improves the stability of the scheme, as it was shown by Roe in [24]. In
addition it is consistent with the conservation scheme approach to evaluation of the flux gradient (4) and

therefore helps in achieving the balance between the numerical approximations of the flux gradient and of

the source term. Therefore, in the case (2) we must use relation (5).
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Thus, we are left with the problem of constructing appropriate expressions for numerical approxima-

tions f iþ1=2, giþ1=2;L, and giþ1=2;R, i ¼ 0; . . . ;N . At this point we must make a choice between coordinatewise

and characteristicwise approach and we choose the second one. Therefore, we need to compute an ap-
proximation of the local characteristic fields for each ðiþ 1=2Þth cell boundary, i.e., we need some nu-

merical approximation Aiþ1=2 to the Jacobian matrix of the flux A ¼ of
ou

at the ðiþ 1=2Þth cell boundary.

Since in the case (2) the flux is explicitly dependent on the space coordinate we must at the same time take in

consideration an additional term v ¼ of
ox [17], and bear in mind that df ¼ Aduþ vdx. Therefore, we propose

to use a natural extension for the standard Roe average relation [30]

f iþ1 � f i ¼ A uiþ1=2;ERoe; xiþ1=2

� �
uiþ1ð � uiÞ þ viþ1=2 � Dx ð6Þ

for the definition of the extended Roe average uiþ1=2;ERoe. Here we must emphasize that we do not assume
viþ1=2 ¼ vðuiþ1=2;ERoe; xiþ1=2Þ, since that would be too restrictive for Eq. (6). Instead, we assume a more

general form

viþ1=2 ¼
1

Dx
Vðui; uiþ1; xi; xiþ1Þ; ð7Þ

where the expression for V ¼ Vðu0; u00; x0; x00Þ is obtained as a numerical approximation for vdx.
In particular, in our case of open channel flow equations (1) we compute [30]

A ¼ 0 1

c2 � v2 2v

� �
and v ¼ 0

g I2 � A
B D

� �� �
; ð8Þ

where we introduce D ¼ oA
ox

��
h¼const:

and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðA=BÞ

p
. If we just put the subscript ðiþ 1=2Þ on the terms in

(8) we will not be able to solve Eq. (6). Therefore, we reformulate the expression for vdx and obtain [30]

vdx ¼ 0

gdI1 � g A
B dA

� �
: ð9Þ

Now a natural numerical approximation for vdx appears to us

V ¼ 0

g I 001 � I 01
� �

� g A0þA00

B0þB00 A00 � A0� �� �
: ð10Þ

If we use this, we immediately see that the equation in the first coordinate of (6) is trivially satisfied, while

the equation in the second coordinate transforms into

Q2
iþ1

Aiþ1

�
� Q2

i

Ai

�
þ gðI1;iþ1 � I1;iÞ ¼ c2iþ1=2ðAiþ1 � AiÞ � v2iþ1=2ðAiþ1 � AiÞ þ 2viþ1=2ðQiþ1 � QiÞ

þ gðI1;iþ1 � I1;iÞ � g
Ai þ Aiþ1

Bi þ Biþ1

ðAiþ1 � AiÞ: ð11Þ

Here the second term on the left-hand side and the fourth term on the right-hand side are equal. Addi-
tionally, if we use approximation

ciþ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
Ai þ Aiþ1

Bi þ Biþ1

s
ð12Þ

also the first and the last term on the right-hand side of (11) become equal. For the remaining terms in (11)

standard computations used in Roe average evaluation lead us to
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viþ1=2 ¼
ffiffiffiffiffi
Ai

p
vi þ

ffiffiffiffiffiffiffiffiffi
Aiþ1

p
viþ1ffiffiffiffiffi

Ai
p

þ
ffiffiffiffiffiffiffiffiffi
Aiþ1

p : ð13Þ

Thus, we found the extended Roe average.
Now local characteristic fields, i.e., eigenvalues kðpÞiþ1=2, right eigenvectors r

ðpÞ
iþ1=2, and left eigenvectors l

ðpÞ
iþ1=2,

p ¼ 1; . . . ;m, at the ðiþ 1=2Þth cell boundary can be computed. Here, m is the number of equations in the

hyperbolic system of balance laws (2). In our case of open channel flow equations m ¼ 2, while eigenvalues,

left, and right eigenvectors are kðpÞ ¼ vþ ð�1Þpc; p ¼ 1; 2,

rðpÞ ¼ 1

kðpÞ

� �
; lðpÞ ¼ 1

2c
ð�1ÞqðpÞkqðpÞ

ð�1Þp
� �

; p ¼ 1; 2; ð14Þ

where qð1Þ ¼ 2 and qð2Þ ¼ 1. Then, we can proceed with the construction of characteristicwise components

f ðpÞ
iþ1=2, g

ðpÞ
iþ1=2;L, and gðpÞiþ1=2;R, p ¼ 1; . . . ;m, i ¼ 0; . . . ;N .

Before we continue the construction we must remind ourselves that the goal is to achieve a numerical

scheme that is balanced. In particular, in the case of steady-state solutions the flux gradient and the source

term cancel out in the hyperbolic balance laws, i.e., these two terms are in balance. Therefore, a scheme will

be consistent with that property if it exactly conserves any steady-state solution, i.e., if

Li ¼ 0; i ¼ 1; . . . ;N ; ð15Þ

is true for all steady states. However, such a condition is usually too complicated to achieve for all steady-

state solutions, so consistency of the scheme is usually requested only for some particular subset of steady-

state solutions. For example, in the case of open channel flow equations (1) we demand from a scheme to be

consistent with the quiescent flow

H ¼ const: and v ¼ 0: ð16Þ

In general, when such consistency is present we say that the scheme has the exact conservation property [3]

for the referent subset of steady-state solutions.
2.1. The local Lax-Friedrichs formulation

Let us now concentrate on the local Lax-Friedrichs (LLF) formulation. Since our goal is to create a

balanced scheme, we compare the original LLF algorithm with the balanced Q-scheme [4], and we propose

numerical approximation of the flux in the form

f ðpÞ
iþ1=2 ¼ f ðpÞ

iþ1=2;Q-scheme þP
ðpÞ
iþ1=2;þ þP

ðpÞ
iþ1=2;�; ð17Þ

and numerical approximation for the source term in the form

gðpÞiþ1=2;L ¼ gðpÞiþ1=2;L;Q-scheme þ
1

Dx
Q

ðpÞ
iþ1=2;þ þ 1

Dx
Q

ðpÞ
iþ1=2;�; ð18Þ
gðpÞiþ1=2;R ¼ gðpÞiþ1=2;R;Q-scheme �
1

Dx
Q

ðpÞ
iþ1=2;þ � 1

Dx
Q

ðpÞ
iþ1=2;�: ð19Þ

The separation of the Q-scheme parts from the high-order WENO reconstruction termsP
ðpÞ
iþ1=2;� and Q

ðpÞ
iþ1=2;�

was one of the key ideas thatwe introduced in [29] and it is reasonable to suppose that it is a good starting point
now too. Before we proceed, let us see what is the effect of this approach on the desired exact conservation

property. If we insert (17)–(19) into (4) and rearrange, for the pth characteristicwise component we obtain
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Lp
i ¼ Lp

i;Q-scheme �
1

Dx
P

ðpÞ
iþ1=2;þ

�
� Q

ðpÞ
iþ1=2;þ

�
� 1

Dx
P

ðpÞ
iþ1=2;�

�
� Q

ðpÞ
iþ1=2;�

�
þ 1

Dx
P

ðpÞ
i�1=2;þ

�
� Q

ðpÞ
i�1=2;þ

�
þ 1

Dx
P

ðpÞ
i�1=2;�

�
� Q

ðpÞ
i�1=2;�

�
: ð20Þ

Here

Lp
i;Q-scheme ¼ � 1

Dx
f ðpÞ
iþ1=2;Q-scheme

�
� f ðpÞ

i�1=2;Q-scheme

�
þ gðpÞi�1=2;R;Q-scheme þ gðpÞiþ1=2;L;Q-scheme ð21Þ

is the Q-scheme part, i.e., it consists of the Q-scheme variant for the spatially variable flux

f ðpÞ
iþ1=2;Q-scheme ¼

1

2
ðf i

�
þ f iþ1Þ � kðpÞiþ1=2

��� ���ðuiþ1 � uiÞ � sign kðpÞiþ1=2

� �
viþ1=2Dx

�
� lðpÞiþ1=2 ð22Þ

and of the Q-scheme geometrical source term expressions

gðpÞiþ1=2;L;Q-scheme ¼
1� sign kðpÞiþ1=2

� �
2

giþ1=2 � l
ðpÞ
iþ1=2; ð23Þ
gðpÞiþ1=2;R;Q-scheme ¼
1þ sign kðpÞiþ1=2

� �
2

giþ1=2 � l
ðpÞ
iþ1=2: ð24Þ

In (22) viþ1=2 is given with (7), while in (23) and (24) giþ1=2 is given with

giþ1=2 ¼
1

Dx
G ui; uiþ1; xi; xiþ1ð Þ; ð25Þ

where G ¼ G u0; u00; x0; x00ð Þ is the numerical approximation for gDx. In particular, in the open channel flow

equations (1) case we compute [30]

gdx ¼ 0

gdI1 � gAdH

� �
: ð26Þ

Here, H ¼ hþ z is the water level. Therefore, a natural choice becomes obvious to us

G ¼ 0

gðI 001 � I 01Þ � g A0þA00

2
ðH 00 � H 0Þ

� �
: ð27Þ

For open channel equations the complete construction of the Q-scheme that guarantees its exact conser-

vation property is known [30]. Since (21) is the part of (20) that we do not have to examine further, we can

concentrate only on the WENO reconstruction terms. In fact, if we can obtain that for the chosen subset of

steady-state solutions

P
ðpÞ
iþ1=2;� � Q

ðpÞ
iþ1=2;� ¼ 0 ð28Þ

is true, then (20) will vanish and the exact conservation property will be obtained. Furthermore, P
ðpÞ
iþ1=2;�

and Q
ðpÞ
iþ1=2;� are WENO reconstructions terms for some appropriately chosen functions v�, related to f, and

w�, related to gdx, respectively. Therefore, they are computed as

P
ðpÞ
iþ1=2;� ¼

Xs�max

s¼s�
min

Xr

j¼0

xr;sa�r;s;jv
�
i�rþsþj; ð29Þ
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Q
ðpÞ
iþ1=2;� ¼

Xs�max

s¼s�
min

Xr

j¼0

xr;sa�r;s;jw
�
i�rþsþj: ð30Þ

Here, sþmin ¼ 0, sþmax ¼ r, s�min ¼ 1, and s�max ¼ r þ 1 define the first and the last stencil of points
S�
r;s ¼ fxi�rþs; . . . ; xiþsg, s ¼ s�min; . . . ; s

�
max to be used; xr;s, s ¼ s�min; . . . ; s

�
max are the weight values associated

with the S�
r;s stencil; a

�
r;s;j, s ¼ s�min; . . . ; s

�
max, j ¼ 0; . . . ; r are some precomputed interpolation coefficients; and

v�k ¼ v�ðxkÞ; w�
k ¼ w�ðxkÞ; k ¼ 0; . . . ;N . The weights xr;s, s ¼ s�min; . . . ; s

�
max are derived as usually in the

WENO reconstruction algorithms from smoothness measures along each stencil. In the typical approach

the weights forP
ðpÞ
iþ1=2;� would be computed from smoothness measures for functions v�, and the weights for

Q
ðpÞ
iþ1=2;� from smoothness measures for functions w�. However, in the expression for (20) only differences

P
ðpÞ
iþ1=2;� � Q

ðpÞ
iþ1=2;� appear, so we decide to use the same weights for both reconstructions, weights computed

from smoothness measures for functions v� � w�. Then using (29) and (30) we obtain

P
ðpÞ
iþ1=2;� � Q

ðpÞ
iþ1=2;� ¼

Xs�max

s¼s�
min

Xr

j¼0

xr;sa�r;s;j v�i�rþsþj

�
� w�

i�rþsþj

�
; ð31Þ

so this idea becomes crucial for the correct balancing results. In fact, now from (31) an obvious conclusion

appears – if we can define v� and w� in such a way that they are not only meaningful numerical ap-

proximations for f and gdx, respectively, but also such that

v� � w� ¼ 0 ð32Þ

is true for some subset of steady-state solutions, our goal will be achieved.

Therefore, let us first deal with v� functions. In [30] we showed that if for the case of hyperbolic con-
servation laws with autonomous flux we use

v� ¼ 1

2
f

��
� kðpÞiþ1=2

��� ���u�� f I�
�

� kðpÞiþ1=2

��� ���uI��� � lðpÞiþ1=2; ð33Þ

with Iþ ¼ i and I� ¼ iþ 1, then the proposed algorithm is identical to the original LLF formulation.

However, now we have a spatially variable flux function, so the standard LLF formulation is not ac-

ceptable. In fact, in order to compensate for the viþ1=2Dx term in (22) we could use

v� ¼ 1

2
fð

�
� f I�Þ � kðpÞiþ1=2

��� ��� uð � uI�Þ � sign kðpÞiþ1=2

� �
VðuI� ; u; xI� ; xÞ

�
� lðpÞiþ1=2: ð34Þ

Furthermore, for w� a possible first idea is to use

w� ¼
1� sign kðpÞiþ1=2

� �
2

G uI� ; u; xI� ; xð Þ � lðpÞiþ1=2: ð35Þ

These two choices seem like acceptable numerical approximations. In particular, for open channel flow

equations (1) under the quiescent flow conditions (16) we get

v� ¼ 1

2ciþ1=2

g
Ai þ Aiþ1

Bi þ Biþ1

��
� Aþ AI�

Bþ BI�

�
ðA� AI�Þ þ ðð � 1Þp � 1ÞgðI1 � I1;I�Þ

�
; ð36Þ
w� ¼ 1

2ciþ1=2

ðð�1Þp � 1ÞgðI1 � I1;I�Þ: ð37Þ



94 S. Vukovic et al. / Journal of Computational Physics 199 (2004) 87–109
However, since we want also to verify (32) we are immediately faced with a problem. In fact, with these

choices in the expression for v� � w� only one term, i.e., term c2iþ1=2 ¼ g½ðAi þ Aiþ1Þ=ðBi þ Biþ1Þ�, which is

derived from jkðpÞiþ1=2j in (34) is evaluated at ðiþ 1=2Þth cell boundary, while all the other values move over
the entire stencil of points. Therefore, it will be impossible to obtain (32). However, we see that a similar

term – term ðAþ AI�Þ=ðBþ BI�Þ appears in (36), which comes from V (10) when included in (34).

Therefore, if instead of V in (34) we use

0

g I 001 � I 01
� �

� c2iþ1=2 A00 � A0� �� �
ð38Þ

we easily see that (32) is verified. According with the presented algorithm we can conclude that with that

modification the new balanced WENO-LLF schemes for (1) are constructed.

2.2. The Roe with entropy fix formulation

Now we can concentrate on the Roe with entropy fix (RF) formulation. Entropy fix in the RF for-
mulation means that if eigenvalue changes sign at some cell boundary, then instead of the Roe formulation

there the LLF formulation should be applied. Since we resolved the problem of the extension of the LLF

formulation in Section 2.1, in this section we just have to deal with the pure Roe formulation. Also, since

the reasoning is very similar to the one in that section, here we give just the key expressions and results.

For the construction of the new RF formulation, we compare the original Roe formulation with the

simple upwind scheme and numerically approximate the flux and the source term using relations

f ðpÞ
iþ1=2 ¼ f ðpÞ

iþ1=2;upwind þP
ðpÞ
iþ1=2;þ þP

ðpÞ
iþ1=2;�; ð39Þ
gðpÞiþ1=2;L ¼ gðpÞiþ1=2;L;upwind þ
1

Dx
Q

ðpÞ
iþ1=2;þ þ 1

Dx
Q

ðpÞ
iþ1=2;�; ð40Þ
gðpÞiþ1=2;R ¼ gðpÞiþ1=2;R;upwind �
1

Dx
Q

ðpÞ
iþ1=2;þ � 1

Dx
Q

ðpÞ
iþ1=2;�: ð41Þ

Here, the upwind parts are given with

f ðpÞ
iþ1=2;upwind ¼

1þ sign kðpÞiþ1=2

� �
2

f i

0
@ þ

1� sign kðpÞiþ1=2

� �
2

f iþ1

1
A � lðpÞiþ1=2; ð42Þ
gðpÞiþ1=2;L;upwind ¼
1� sign kðpÞiþ1=2

� �
2

giþ1=2 � l
ðpÞ
iþ1=2; ð43Þ
gðpÞiþ1=2;R;upwind ¼
1þ sign kðpÞiþ1=2

� �
2

giþ1=2 � l
ðpÞ
iþ1=2: ð44Þ

Terms P
ðpÞ
iþ1=2;� and Q

ðpÞ
iþ1=2;� are again high-order WENO reconstructions. Therefore, we compute them in

the same way as described in Section 2.1, however now, following [29], using functions:

v� ¼
1� sign kðpÞiþ1=2

� �
2

fð � f I�Þ � lðpÞiþ1=2; ð45Þ
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w� ¼
1� sign kðpÞiþ1=2

� �
2

G uI� ; u; xI� ; xð Þ � lðpÞiþ1=2: ð46Þ

Here, Iþ ¼ i and I� ¼ iþ 1, just as before. In particular, for (1) under quiescent flow conditions (16) these

function become

v� ¼ 1

2ciþ1=2

ðð�1Þp � 1ÞgðI1 � I1;I�Þ; ð47Þ
w� ¼ 1

2ciþ1=2

ðð�1Þp � 1ÞgðI1 � I1;I�Þ: ð48Þ

Therefore, now no factor evaluated at ðiþ 1=2Þth cell boundary appears in the expressions, (32) is im-

mediately satisfied and there is no need for further modification of the proposed algorithm.
3. Extension of WENO schemes to one-dimensional elastic wave equations

The one-dimensional elastic wave equations [1] are balance laws of type (2) with

u ¼ q�
qu

� �
; f ¼ �qu

�r

� �
; g ¼ �u dq

dx
0

� �
: ð49Þ

Here, q ¼ qðxÞ is the media density, � ¼ �ðx; tÞ is the strain, u ¼ uðx; tÞ is the velocity, and r is the stress

defined with a stress–strain relation r ¼ rð�; xÞ. In the case of the linear acoustics the stress–strain relation is

rð�; xÞ ¼ K�, where K ¼ KðxÞ is the bulk modulus of compressibility. If the stress–strain relation is non-

linear, for example if it is given with

rð�; xÞ ¼ q�þ 0:3ðq�Þ2; ð50Þ

it is the nonlinear acoustics case.

Since the process of extending WENO schemes to the elastic wave equations is very similar to the one we

presented in Section 2 for the open channel flow case, we present here only what is different. Also, we want

to emphasize that our goal now is to obtain consistency of the schemes with all the steady-state solutions,

and these are characterized with r ¼ const: and u ¼ const:
In the construction of the schemes, first we find numerical approximations for vdx and for gdx,

V ¼ 0
� r00 � r0� �

� b q00�00 � q0�0
� �� �

; ð51Þ
G ¼ � u0þu00

2
ðq00 � q0Þ
0

� �
: ð52Þ

Here,

b ¼ K 0 þ K 00

q0 þ q00 ; ð53Þ

in the case of linear acoustics, or
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b ¼ 1þ 0:6
�0 þ �00

2

q0 þ q00

2
; ð54Þ

in the case of nonlinear acoustics with stress–strain relation (50).

Then, we compute the extended Roe average (6)

ciþ1=2 ¼
Ki þ Kiþ1

qi þ qiþ1

; ð55Þ

in the linear acoustics case, or

ciþ1=2 ¼ 1þ 0:6
�i þ �iþ1

2

qi þ qiþ1

2
; ð56Þ

in the case of nonlinear acoustics with stress–strain relation (50). Here, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=qÞðor=o�Þjx¼const:

p
is the

wave speed.

Furthermore, in the WENO-LLF formulation we again use (17)–(19), (22)–(24), (29) and (30). Morover,

if we try with (34) and (35), under steady-state conditions we again have the problem with factor c2iþ1=2 that

prevents (32) to be true, just as it was the case in the previous section. In fact, this problem can be solved in

a similar way as in the open channel flow equations case. We can find a term similar to c2iþ1=2 inV (51) – the

term b and then put

0

�ðr00 � r0Þ � c2iþ1=2ðq00�00 � q0�0Þ

� �
; ð57Þ

instead of V in (34). With that choice, the modification to the WENO-LLF schemes are completed.

In a similar way, we can see that (29), (30) and (39)–(46) as we suggested in [29], with no further
modifications present the valid new WENO-RF algorithm.
4. Generalized algorithm

In [29] we proposed an extension of the finite difference WENO schemes, which were originally devel-

oped for hyperbolic systems of conservation laws [2,15,16,19,25–27] to new finite difference WENO schemes

for hyperbolic systems of balance laws with a geometrical source term. In Sections 2 and 3 we go one step
further and find appropriate extensions of the same schemes to two hyperbolic systems of balance laws:

open channel flow equations (1) and elastic wave equations (49). Both examined balanced laws have the

geometrical source term and an additional difficulty – spatially variable flux. In fact, the ideas proposed in

[29] and in Sections 2 and 3 can be expressed as one generalized algorithm as follows.

In any extended finite difference WENO scheme we use expressions (4) and (5). Then, for the LLF

formulation we use (17)–(19), (22)–(24), (29), and (30). Furthermore, since for v� and w� we cannot use

(34) and (35) we proceed as follows. First we establish what is the value of the factor jkðpÞiþ1=2j for the

particular steady-state solution subset. Obviously, this value is an average expression between states ui
and uiþ1. Then we can easily generalize that expression to the average between any two states u0 and u00

and try to find such a term in V, as we did in the previous two sections, or in G as we did in [29]. That

term, if found in V or G we denote as b or c, respectively. Then we can split V and G so that the

following relations are valid:

Vðu0; u00; x0; x00Þ ¼ V1ðu0; u00; x0; x00Þ þ bðu0; u00; x0; x00ÞV2ðu0; u00; x0; x00Þ; ð58Þ
Gðu0; u00; x0; x00Þ ¼ G1ðu0; u00; x0; x00Þ ¼ cðu0; u00; x0; x00ÞG2ðu0; u00; x0; x00Þ: ð59Þ
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These relations work well for all the hyperbolic balance laws that we examined, so they are a good guideline

in general. Furthermore, we take biþ1=2 ¼ bðui; uiþ1; xi; xiþ1Þ and ciþ1=2 ¼ cðui; uiþ1; xi; xiþ1Þ, and then define

the appropriate expression for functions v� and w� with

v� ¼ 1

2
fð

�
� fI�Þ � kðpÞiþ1=2

��� ���ðu� uI�Þ � sign kðpÞiþ1=2

� �
V1ðuI� ; u; xI� ; xÞ

�
þ biþ1=2V2ðuI� ; u; xI� ; xÞ

��
� lðpÞiþ1=2;

ð60Þ
w� ¼ 1

2
G1ðuI� ; u; xI� ; xÞ

�
� sign kðpÞiþ1=2

� �
ciþ1=2G2ðuI� ; u; xI� ; xÞ

�
� lðpÞiþ1=2: ð61Þ

First of all, these expressions are again acceptable numerical approximation for f and gdx. On the other
hand, if we combine them into v� � w�, we can separate terms that contain factors evaluated at

ðiþ 1=2Þth cell boundary from the other terms. We can even generalize a little bit and define two new

functions

/1ðu0; u00; x0; x00Þ ¼ ðfðu00; x00Þ � fðu0; x0Þ �G1ðu0; u00; x0; x00ÞÞ � lðpÞiþ1=2; ð62Þ
/2ðu0; u00; x0; x00Þ ¼ kðpÞiþ1=2

��� ��� u00
��

� u0
�
þ sign kðpÞiþ1=2

� �
V1 u0; u00; x0; x00

� ��
þ biþ1=2V2 u0; u00; x0; x00

� ��
� sign kðpÞiþ1=2

� �
ciþ1=2G2ðu0; u00; x0; x00Þ

�
� lðpÞiþ1=2: ð63Þ

Obviously v� � w� ¼ /1 uI� ; u; xI� ; xð Þ þ /2 uI� ; u; xI� ; xð Þ. Therefore, if for the chosen steady-state solu-

tions we can prove

/1 u0; u00; x0; x00
� �

¼ 0 and /2 u0; u00; x0; x00
� �

¼ 0; ð64Þ

then (32) is also true, i.e., the new scheme is consistent with that subset of steady-state solutions. Conditions

in (64) are not artificial. They can be verified in all the hyperbolic balance laws we examined. Even more, we

can easily see that if these conditions are satisfied the appropriate Q-scheme will have the exact conser-

vation property too. With this we concluded the generalized WENO-LLF algorithm.
In the RF formulation we use (29), (30), and (39)–(44). Furthermore, expressions (45) and (46), that we

suggested in [29] work well. Therefore, no further modifications are needed. In particular, only one con-

dition for the exact conservation property must be satisfied and it is exactly the first condition in (64). Thus,

we see that with the correct construction of the balanced LLF algorithm for any particular hyperbolic

system of balance laws, the construction and balancing of the RF formulation is automatically solved. In

fact, comparison with the Q-scheme part terms or upwind scheme part terms shows even more – the correct

construction of the balanced LLF algorithm also solves appropriate well-balanced application of these

schemes for any balance law system in consideration.
5. Numerical results

In this section we present results for one convergence test on a linear acoustics problem, four open

channel flow test problems, and four elastic wave test problems. If not stated otherwise, in all computations

we use three-step Runge–Kutta time integration and we take [19]

Dt / ðDxÞR=3: ð65Þ
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Here R is the theoretical order of the used ENO or WENO reconstruction. More precisely, if the function

under ENO or WENO reconstruction is smooth enough, then the resulting reconstruction is of Rth order of

accuracy, where R ¼ r þ 1 or R ¼ 2r þ 1, respectively. Relation (65) guarantees that accuracy in time,
which is OðDt3Þ since we always use three-step, i.e., third-order Runge–Kutta method, is the same as the

accuracy in space, which is of course OðDxRÞ. Also, if not stated otherwise, we use CFL coefficient ccfl ¼ 0:8.

5.1. A convergence test

First of all, we present experimentally obtained orders of accuracy for the new schemes. In order to do

this we use a Cauchy problem in linear acoustics. We obtained this problem by modifying a test problem

from [1]. Since ENO or WENO reconstruction is of high order only for smooth functions, we use smooth
media properties and smooth initial data. In particular, the initial state is given with

rð�ðx; 0ÞxÞ ¼ �1� 1:5e�ð8xÞ2 ; uðx; 0Þ ¼ 0; ð66Þ

while the sound speed and impendance Z ¼ qc of the media are given with

cðxÞ ¼ 1� 0:5 sinðpxÞ; ZðxÞ ¼ 1: ð67Þ

Since we do not know the exact solution for this problem, as a substitution we use numerical solution

obtained with pointwise WENO-RF, r ¼ 5 on the grid with 1280 points after t ¼ 0:001 s from the beginning
of the propagation of the pulse in pressure. Then we compute L1 and L1 errors and orders for solutions

obtained on much coarser grids of 10, 20, etc. points over the comparison interval ½�1; 1�. Table 1 shows

that there is almost no difference in computed orders of accuracy between pointwise and balanced versions

of schemes. In particular, Table 1 contains results for r ¼ 5 case, but other values r ¼ 1, 2, 3, and 4 for

which we performed computations show the same trend. Also, in Tables 1–3 we can see that the experi-
Table 1

The convergence test results for RF, r ¼ 5 schemes, Section 5.1

Method No. of cells 10 20 40 80

Bal. ENO, R ¼ 6 L1 error 3:9867� 10�4 6:2253� 10�5 6:6501� 10�6 2:5451� 10�7

L1 order – 2.68 3.23 4.71

Point. ENO, R ¼ 6 L1 error 3:5749� 10�4 6:2253� 10�5 6:6541� 10�6 2:5483� 10�7

L1 order – 2.52 3.23 4.71

Bal. WENO, R ¼ 11 L1 error 3:8744� 10�4 9:2013� 10�5 2:5937� 10�6 7:4077� 10�9

L1 order – 2.07 5.15 8.45

Point. WENO, R ¼ 11 L1 error 3:8744� 10�4 9:2010� 10�5 2:5920� 10�6 6:9258� 10�9

L1 order – 2.07 5.15 8.55

Table 2

The convergence test results for balanced ENO-RF schemes, Section 5.1

Method No. of cells 10 20 40 80 160

r ¼ 1, R ¼ 2 L1 error 3:3901� 10�4 1:5969� 10�4 1:6126� 10�4 1:0601� 10�4 5:7251� 10�5

L1 order – 1.09 )0.01 0.61 0.89

r ¼ 2, R ¼ 3 L1 error 4:9500� 10�4 1:4359� 10�4 5:3350� 10�5 1:2019� 10�5 1:6934� 10�6

L1 order – 1.79 1.43 2.15 2.83

r ¼ 3, R ¼ 4 L1 error 1:5392� 10�4 1:0192� 10�4 2:6560� 10�5 3:7277� 10�6 5:5567� 10�7

L1 order – 0.59 1.94 2.83 2.75

r ¼ 4, R ¼ 5 L1 error 1:1740� 10�4 7:1203� 10�5 1:0487� 10�5 8:4816� 10�7 3:2901� 10�8

L1 order – 0.72 2.76 3.03 4.69



Table 3

The convergence test results for balanced WENO-RF schemes, Section 5.1

Method No. of cells 10 20 40 80 160

r ¼ 1, R ¼ 3 L1 error 5:6548� 10�4 2:4381� 10�4 1:4108� 10�4 7:5150� 10�5 3:7468� 10�5

L1 order – 1.21 0.79 0.91 1.00

r ¼ 2, R ¼ 5 L1 error 4:9500� 10�4 1:8093� 10�4 2:4973� 10�5 2:1678� 10�6 1:2825� 10�7

L1 order – 1.45 2.86 3.53 4.08

r ¼ 3, R ¼ 7 L1 error 4:4948� 10�4 1:1190� 10�4 1:1858� 10�5 5:8425� 10�7 1:2531� 10�8

L1 order – 2.01 3.24 4.34 5.54

r ¼ 4, R ¼ 9 L1 error 4:1693� 10�4 1:0525� 10�4 5:7218� 10�6 2:1076� 10�8 8:6470� 10�11

L1 order – 1.99 4.20 8.08 7.93
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mentally obtained orders are smaller but very close to the theoretical orders R. In all the three tables we

present L1 errors and orders. As expected, the computed L1 orders are better – in average for 0:5 bigger

then the L1 ones. Therefore, we can conclude that the proposed modification that lead to the balancing of

the schemes, did not deteriorate convergence properties of the schemes.

5.2. The quiescent flow and a tidal wave propagation in a channel proposed by the Working Group on Dam

Break Modeling

In this subsection we present results for two open channel flow tests, both for the same channel ge-

ometry, which was proposed by the Working Group on Dam Break Modeling [14]. The observed channel

has rectangular cross-section, very variable bed level and width (Fig. 1), and Manning’s friction factor

M ¼ 0:03. In the first test the initial condition is the quiescent flow with water level equal to H ¼ 15 m.

Since no perturbation is introduced the quiescent flow stays preserved. In the second test the initial con-

dition is the quiescent flow with water level H ¼ 12 m. Then from the upstream end a tidal wave propagates

while at the downstream end there is a wall

hð0; tÞ ¼ 16þ 4 sin
ðt � 10; 800Þp

21; 600

� �
; Qð1500; tÞ ¼ 0: ð68Þ
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Fig. 1. (a) Channel bed level and (b) width as proposed by the Working Group on Dam Break Modeling, Section 5.2.



Table 4

L1 error for the quiescent flow test, Section 5.2

Method H error Q error

Bal. version Point. version Bal. version Point. version

Q-scheme 9:948� 10�14 1:741� 100 4:798� 10�12 2:480� 102

Flux limited 9:948� 10�14 1:744� 100 4:319� 10�12 2:188� 102

ENO-LLF, r ¼ 1 9:948� 10�14 1:551� 100 8:397� 10�12 1:769� 102

ENO-LLF, r ¼ 5 9:948� 10�14 7:177� 10�1 6:673� 10�12 1:574� 102

ENO-RF, r ¼ 1 9:948� 10�14 9:630� 10�1 3:359� 10�12 1:423� 102

ENO-RF, r ¼ 5 9:948� 10�14 6:208� 10�1 8:197� 10�12 1:180� 102

WENO-LLF, r ¼ 1 9:948� 10�14 1:749� 100 1:871� 10�11 1:510� 102

WENO-LLF, r ¼ 5 2:007� 10�13 1:893� 100 5:716� 10�11 8:637� 101

WENO-RF, r ¼ 1 9:948� 10�14 9:085� 10�1 1:991� 10�11 1:330� 102

WENO-RF, r ¼ 5 2:007� 10�13 1:290� 100 6:101� 10�11 6:683� 101
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In both tests, we perform all computations using space step Dx ¼ 2:5 m. Results presented in Table 4 and

Fig. 2 clearly demonstrate the superiority of the balanced version of the schemes when applied to quiescent

flows and slowly varying nonstationary flows over highly irregular channel bed. In fact, in those cases the

magnitude of the error in nonbalanced versions is of the same order as of the waves that propagate through

the domain. Therefore the results obtained with these schemes have unacceptably large errors and only

balanced versions can be used.
5.3. A stationary jump in a converging-diverging channel

In the open channel flow test contained in this section the channel is frictionless, rectangular, with

horizontal bed and variable width [28]

BðxÞ ¼ 5� 0:7065 1þ cos 2p x�250
300

� �� �
if jx� 250j6 150;

5 otherwise:

	
ð69Þ

We test a steady-state flow with subcritical inflow of discharge Q ¼ 20 m3=s and a downstream weir, so

that at the channel restriction a hydraulic jump occurs. We perform all computations using Dx ¼ 2:5
m. Since channel geometry is smooth, performances of the pointwise and balanced version of the

schemes, particularly on the water level (Fig. 3) are very similar and the advantages of the balanced

ones are less obvious. However, if we make a closer look on the computed discharge (Fig. 3), we can
see that pointwise version produces error in the zone of the restriction of the channel, however, of

small magnitude since channel geometry is smooth. Both versions have a local difficulty with the

discharge at the jump, similar to all other schemes applied to such problems. Furthermore, conver-

gence history computed for the relative error in water depth and presented in Fig. 4 more obviously

shows the advantage of the proposed balancing of WENO schemes. Also, this test is good for ob-

serving high resolution properties of the schemes since the solution has a discontinuity – the hydraulic

jump.
5.4. Water wave propagation through a natural watercourse

In the last open channel flow test we consider one example of a natural watercourse. The observed

section of the river is L ¼ 2400 m long, with highly irregular geometry given with cross-sections (Fig. 5)
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Fig. 2. (a) Water level and (b) discharge, after 3 h of tidal wave propagation, Section 5.2.

S. Vukovic et al. / Journal of Computational Physics 199 (2004) 87–109 101
measured approximately every 50 m. The Manning’s friction factor varies through the watercourse de-

pending on the properties of the riverbed, with values between 0.03 and 0.05. The initial condition is

quiescent flow with H ¼ 446 m. Then after 120 s a sudden water wave propagates from the upstream

boundary, i.e.
Qð0; tÞ ¼ 0 m3=s if t6 120;
50 m3=s otherwise;

	
ð70Þ
while at the downstream boundary the water level remains fixed. In all computations we use space step

Dx ¼ 10 m. Computational results in Figs. 6 and 7 show that differences between pointwise and balanced
version are not significant in water level. However, some difficulties of the pointwise version can be ob-

served in the water level over last 500 m of the river section where irregularity of the riverbed is higher and

even a hydraulic jump occurs. On the other hand, the error in discharge when computed with pointwise
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Fig. 3. (a) Water level and (b) discharge for the hydraulic jump test, Section 5.3.
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schemes is very visible and unacceptably large, while balanced versions give excellent results (Figs. 6 and 7).

We would like to emphasize again that in this test problem as well as in the case of any other natural

watercourse, the cross-sections of the channel are not rectangular. Therefore, such problems could not be

computed if we did not discuss and solve the balancing for the general form of the open channel flow

equations (Section 2).
5.5. Nonlinear elasticity in a rapidly varying medium

Both tests in this section are for the elastic wave model [1]. More precisely, a heterogeneous media with

nonlinear stress–strain dependency (50) initially is in the state uðx; 0Þ ¼ �ðx; 0Þ ¼ 0, and then a smooth pulse

incomes from the left boundary
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uð0; tÞ ¼ � 1
5
1þ cos p

30
ðt � 30Þ

� �� �
if t6 60;

3 if t > 60:

	
ð71Þ

In the first test, the medium has a rapidly varying but continuous density qðxÞ ¼ 2� sinðpxÞ, while in the

second test the medium density has an additional difficulty – it is discontinuous

qðxÞ ¼ 1 if 2j < x < 2jþ 1;
3 if 2jþ 1 < x < 2jþ 2:

	
ð72Þ

In all computations we use space step Dx ¼ 0:1. As expected, in the first, smooth case, the difference be-

tween pointwise and balanced versions is negligible. Therefore, we only present results obtained with

balanced versions of different orders of accuracy (Fig. 8). These results show that contribution of the
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Fig. 8. (a) Strain and (b) stress at t ¼ 240 s for the elastic wave propagation in a continuous media, Section 5.5.
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Fig. 9. (a) Strain and (b) stress at t ¼ 60 s for the elastic wave propagation in a discontinuous media, Section 5.5.
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increase of space order brings significant improvement in scheme resolution. In the second test with dis-

continuous media properties, error in pointwise version computations are very large. We present results

obtained up to time t ¼ 60 s (Fig. 9) since soon after that moment the error in pointwise scheme builds up

so much that causes computational break down. As opposed to that, balanced scheme results present no

difficulties. In particular, since the medium density is discontinuous, the high resolution property of the new

schemes can be clearly observed in Fig. 9(a).

5.6. Linear acoustics

In this section we present results for two linear acoustics tests [1]. In both tests the initial conditions are

given by u xð Þ ¼ 0 and

rð�ðx; 0ÞxÞ ¼ � 7
4
þ 3

4
cosð10px� 4pÞ if 0:4 < x < 0:6;

1 otherwise:

	
ð73Þ
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Fig. 10. Stress at t ¼ 0:40 s for the first linear acoustics test, Section 5.6.
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In the first test the properties of the media are given with

cðxÞ ¼ 1þ 0:5 sinð10pxÞ; ZðxÞ ¼ 1þ 0:25 cosð10pxÞ; ð74Þ

and in the second test with

cðxÞ ¼ 0:6 if 0:35 < x < 0:65;
2 otherwise;

	
ZðxÞ ¼ 6 if 0:35 < x < 0:65;

2 otherwise:

	
ð75Þ

We perform all computations using Dx ¼ 0:005. Again, as expected, when the media has smooth properties

(74) pointwise and balanced version results coincide while in the discontinuous case (75) the error in the

pointwise version is extremely large (Fig. 11). Also, in both test cases increase in WENO reconstruction

parameter r results in a significant increase in high resolution properties of the schemes (Figs. 10 and 11).
6. Concluding remarks

The new WENO schemes that we propose in this paper are aimed on solving hyperbolic systems of

balance laws with spatially variable flux and geometrical source term. As we show here and in [29], when

flux is not spatially variable the new algorithm reduces to the one designed for balance laws with geo-

metrical source terms, which we presented in [29], and when in addition the balance laws are homogeneous,

both algorithms reduce to the original WENO schemes.

We apply new schemes to the one-dimensional open channel flow equations and to the one-dimensional
elastic wave equations. Naturally, application to the one-dimensional shallow water equations that we

presented in [29] is valid for the new algorithm too. Since the new algorithm respects balancing between the

flux gradient and the source term, we obtain schemes with exact conservation property, i.e., schemes

consistent with appropriate steady-state solutions in both cases. We prove that property analytically and

demonstrate it through several test problems. On the other hand, the same tests show that the original

version of WENO schemes combined with only pointwise source term evaluation gives poor results when

applied to nonsmooth data (channel geometry or media properties).



-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

x

st
re

ss

exact point. WENO-RF, r=5 point.WENO-RF, r=1 

-2,2

-2,0

-1,8

-1,6

-1,4

-1,2

-1,0

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

x

st
re

ss

bal. WENO-RF,r=5 bal. WENO-RF,r=1 bal. Q-scheme

(a)

(b)

Fig. 11. (a) Pointwise vs. exact and (b) low vs. high-order schemes on the stress at t ¼ 0:50 s for the second linear acoustics test, Section

5.6.
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The results of a convergence test on a Cauchy problem for linear acoustic equations, lead us to the
conclusion that modifications which we introduced into WENO schemes do not deteriorate order of ac-

curacy when compared to original WENO schemes combined with pointwise source term evaluation.

Therefore, the new schemes are high order, high resolution and shock capturing as much as the original

WENO schemes are.
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